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ABSTRACT 

I m p l i c i t  methods f o r  hyperbol ic  equat ions are analyzed by construc- 

t i n g  LU f a c t o r i z a t i o n s .  I t  is shown t h a t  t h e  s o l u t i o n  of t h e  r e s u l t i n g  

t r i d i a g o n a l  systems in  one dimension, are w e l l  conditioned i f  and only i f  

t h e  LU f a c t o r s  are d iagona l ly  dominant. S t a b l e  i m p l i c i t  methods t h a t  

have d iagona l ly  dominant f a c t o r s  are constructed f o r  hype rbo l i c  equat ions 

i n  n space dimensions. Only two f a c t o r s  are required even i n  t h r e e  

space dimensions. Acce lera t ion  t o  a s t eady  s ta te  is  analyzed. When t h e  

multi-dimensional backward Euler method is used wi th  l a r g e  t i m e  s t e p s  it 

is shown t h a t  t h e  scheme approximates a Newton-Raphson i t e r a t i o n  procedure. 
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1. In t roduc t ion  

The use  of i m p l i c i t  methods t o  so lve  hyperbol ic  equat ions  has been 

inc reas ing  i n  recent  yea r s  (e.g. [ l ] ,  121, 181). Although i m p l i c i t  

methods are f r equen t ly  uncondi t ional ly  s t a b l e ,  t h e  permiss ib le  time 

s t e p  may s t i l l  be r e s t r i c t e d  by the  need t o  main ta in  a des i r ed  l e v e l  

of accuracy. Two classes of problems may b e  d i s t ingu i shed  f o r  which 

i m p l i c i t  methods are l i k e l y  t o  be advantageous. F i r s t ,  t h e r e  are 

s t i f f  problems which conta in  seve ra l  t i m e  scales i n  which most of t h e  

energy is contained i n  t h e  slow modes. 

of an e x p l i c i t  method would b e  l imi t ed  by a s t a b i l i t y  c r i t e r i o n  set by 

Nevertheless ,  t h e  time s t e p  

t h e  speed of t h e  f a s t  mode. Secondly, t h e r e  are problems i n  which 

only  a s t eady- s t a t e  s o l u t i o n  is  des i r ed  and t h e  time-dependent equat ions  

are used merely as a dev ice  f o r  t he  i terat ive s o l u t i o n  of t h e  steady- 

state equat ions.  

I m p l i c i t  methods have t h e  disadvantage t h a t  they r e q u i r e  t h e  solu- 

t i o n  of a l a r g e  number of coupled equat ions  a t  each time s t e p .  

t h e  reduct ion  i n  t h e  number of t i m e  s t e p s  compared wi th  an e x p l i c i t  method 

may be outweighed by t h e  inc rease  i n  t h e  number of a r i t h m e t i c  ope ra t ions  

requi red  f o r  each t i m e  s t ep .  

one needs t o  so lve  block t r id i agona l  systems. I f  t he  s o l u t i o n  can be  

ob ta ined  by Gaussian e l imina t ion  wi thout  p ivo t ing ,  then i t  w i l l  b e  found 

by t h e  Thomas a lgor i thm i n  O(m N) opera t ions  where m is t h e  block 

s i z e  and N is t h e  number of unknowns ( see  [ 7 ] ) .  For many s tandard  a l -  

gori thms,  d iagonal  dominance is  l o s t  when t h e  time s t e p s  becomes l a rge .  

I t  i s  then no longer  clear t h a t  the Thomas a lgor i thm is  numerical ly  s t a b l e  

Hence, 

With a t y p i c a l  a l t e r n a t i n g  d i r e c t i o n  method 
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Another d i f f i c u l t y  wi th  a l t e r n a t i n g  d i r e c t i o n  methods is encountered 

i n  t h e  three-dimensional case. When marching t o  a s teady  s ta te  using large 

t i m e  s t e p s ,  one wants t o  ensure  t h a t  t h e  numerical  s o l u t i o n  is independent 

of t h e  s i z e  of t h e  t i m e  s t e p s .  A simple way to do t h i s  is t o  s o l v e  f o r  t h e  

change i n  t i m e ,  bun= un+' - un a t  each time s t e p .  The equat ions  then  have 

t h e  form 

Q"Au"= AtLu" 

( see  f o r  example El]). 

w e  have Lu = 0 independent of A t .  I n  t h e  two-dimensional case a l t e r n a t i n g  

d i r e c t i o n  methods which s o l v e  f o r  e i t h e r  u n+l o r  A U ~  are equ iva len t .  

However, i n  the three-dimensional case t h e  two approaches y i e l d  d i f f e r e n t  

schemes. The three-dimensional a l t e r n a t i n g  d i r e c t i o n  a lgor i thm i s  uncon- 

d i t i o n a l l y  s t a b l e  i n  t h e  l inear case i f  one solves f o r  

s teady  s t a t e  s o l u t i o n  depends on A t .  

f o r  Aun t o  produce a s t eady  s o l u t i o n  independent of A t ,  then t h e  

a lgor i thm is  uncondi t iona l ly  uns t ab le  f o r  scalar hype rbo l i c  problems 

(Warming, private communication). For t h e  Euler  eaua t ions  t h e  eaua t ion  f o r  

I n  t h i s  case it  is evident  t h a t  i n  t h e  s teady  s t a t e  

un+l,, but  t h e  

On t h e  o t h e r  hand if one so lves  

. t h e  entropy i s  e s s e n t i a l l y  a scalar equat ion .  Hence, t h i s  method is n o t  

s t a b l e  fo r  i n v i s c i d  f l u i d  dynamics. 

In t h i s  s tudy  w e  demonstrate  how p reca lcu la t ed  LU decompositions may 

be cons t ruc ted  t o  approximate t h e  i m p l i c i t  equa t ions  obta ined  by l i n e a r i z i n g  

a Crank-Nicolson o r  backward Euler  scheme. It is shown t h a t  t h i s  approach 

can be used t o  d e r i v e  schemes which are uncond i t iona l ly  s t a b l e  i n  any number 

of space dimensions and a l s o  y i e l d  a s teady  s ta te  s o l u t i o n  which i s  independent 

of A t .  The opera t ion  count a t  each t i m e  s t e p  is a l s o  q u i t e  moderate because 

t h e  systems determined by each of t h e  L and U f a c t o r s  involve  d iagonal  

block m x m matrices. 
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We emphasize that in three dimensions there are only two factors instead of 

the three factors of an alternating direction algorithm. 

The matrices of an unfactored implicit algorithm are not diagonally 

dominant for large time steps. Thus, the usual sufficient conditions 

€or using Gaussian elimination without pivoting are no longer satisfied. 

Nevertheless we show that the LU decomposition can often still be constructed 

in such a way that each factor is diagonally dominant. This ensures the 

numerical stability of the factored block triangular systems at each time 

step. 

11. One-Dimensional Problems 

Consider the one-dimensional system 

Wt+ Aw, = 0 

with A a constant matrix. 

Then the Crank-Nicolson scheme is given by 

or 

where 6 is a central difference operator defined by 

We also define forward and backward difference operators 

- 3- 
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I 

w .  - w .  1-1 w.+l-  w.  
G x  D - w  * 

A X  j D + w j =  ' ( 2 . 3 b )  

Equations (2.2a, b) form a b lock  t r i d i a g o n a l  system. 

f a c t b r  (2.2b) w i t h i n  t h e  t r u n c a t i o n  e r r o r  O U A ~ ) ~ )  by 

We can approximately 

( I + T D + )  A t A  ( 1 4  A t A  D-) (wn?'wn ) = -AtA6wn ( 2 . 4 )  

n+l n S ince  w - w is  of o rde r  A t  t h e  d i f f e r e n c e  between t h e  schemes 

3 (2.2) and (2.4) are terms of o rde r  (At) and so t h e  a d d i t i o n a l  e r r o r s  

are of t h e  order  of t h e  t r u n c a t i o n  e r r o r .  For a bounded domain t h e  

ope ra to r s  I + &  and I+&D can be  inve r t ed  d i r e c t l y  by 

beginning a t  t h e  l e f t  and r i g h t  boundaries, r e s p e c t i v e l y .  Computational 

exper ience  i n d i c a t e s  t h a t  t h i s  sweeping method f a i l s  f o r  l a r g e  A t .  Th is  is 

t r u e  even though (2.4) is uncondi t iona l ly  s t a b l e  i n  terms of t h e  u s u a l  i n i t i a l  

4 D+ 4 -  

va lue  s t a b i l i t y  a n a l y s i s  v a l i d  f o r  small A t .  The reason  f o r  t h i s  i s  t h a t  i f  

A has  both p o s i t i v e  and nega t ive  e igenvalues ,  t h e  f a c t o r s  l o s e  d iagonal  domi- 

nance. The sweeping s o l u t i o n  process  then becomes numerical ly  uns tab le .  

W e  now cons ider  a gene ra l  t h r e e  p o i n t  d i f f e r e n c e  formula which i s  a 

second order  approximation t o  (2.1).  L e t  

n+l n A w n = w  - w  , 
j j  j 

and cons ider  t h e  scheme 

- 2Aw. n + A W ~ : ~ )  = 
3 J 

j-1 ( 2 . 6 )  j-1 2 

-4- 



Here, 

the new and old time levels. U = 0, 5 = 3 yields the Crank-Nicolson 

scheme while 5 1 yields the fully implicit method. u is a matrix para- 

meter that is chosen as a function of A so that matrix multiplications are 

commutative. (2.6) can be rewritten as 

X = At/Ax and 5 denotes the weighting of the space differences at 

n ) j-1 
( n - w n  ),(?.6a) 
"j +1 j -1 

r-- AwY + ( A wj:l - Aw ) + 5 ( Awj:, - 2Awn + Aw 
1 j -1 

or 

Q (wn+' - wn ) = -hAGw , (2.6b) 

where Q is a block tridiagonalmatrix. Omitting the effect of boundaries, Q 

can be replaced by LU where L and U have the form 

1 U 

- 5- 



If the matrix Q has the decomposition LU with nonsingular factors 

then these factors are unique to within a diagonal matrix. That is, given 

L and U the most general decomposition of Q is given by Q = L'U' with 

L' = L D , U '  = D - b  for some nonsingular diagonal matrix D. The matrix D 

does not enter in any essential manner, and it will be chosen for convenience 

In particular, we consider a scaling so that R1 + R2 = I. 

We demand that ( 2 . 6 )  be second order accurate in space and set Q = LU 

with L and U given by (2 .7 ) .  Using a Taylor series expansion and com- 

paring coefficients we find that 

(2.8) 

u1 = a - 6AA/2 u 2 = y + CIA12 

with a + y  = 1. Multiplying L and U as given by (2 .8 )  and comparing 

with ( 2 . 6 )  we find that 

= C Y  
E2A2A2 a ( 1 - a ) +  

Now, it is convenient to consider 0 as dependent on two parameters 

2 2 2  
C Y = O , + U , ( A A  . 

I L 

Hence, 

1 - ( 4 0 2 - 1 ) 5  2 2 2  X A - 4 0 1  5 
a= 

2 

(2.9) 

(2.9a) 

( 2 .  l o )  



W e  stress t h a t  t h e  inversion procedure is w e l l  conditioned i f  and only 

i f  t h e  ma t r i ces  L and U a r e  well conditioned. For example, i n  t h e  s c a l a r  

case wi th  R1 * 1, L2 = b t h e  inverse L = (m..) is given by 
-1 

1J 

= (-bIi-j f o r  i 1. j. For b > 1 t h i s  is  a poorly conditioned matr ix .  

Hence, Tqe r e a u i r e  f o r  symmetric ma t r i ces  A t h a t  

(y-y)2 1. (.++A)’ , 

and 

2 

(a- SXA 2 ) 2  1 (Y+?) 9 

where a - f(A) and y = f ( A ) .  Given two symmetric ma t r i ces  A and B 

A 2 B means (Ax,x) (Bx,x) f o r  a l l  v e c t o r s  x. Since a + y = 1, 

t h e  inve r s ion  a lgor i thm is w e l l  conditioned i f  and only i f  

W e  want t h e  method t o  b e  uncondi t iona l ly  s t a b l e  and so (2.11) imp l i e s  t h a t  

a and y must be func t ions  of A o r  a t  l e a s t  func t ions  of t h e  s p e c t r a l  

r ad ius  of A. 

For a w e l l  conditioned problem, (2.11) toge the r  w i t h  (2.10) r e q u i r e s t h a t  

o r  equ iva len t ly  

- 7- 



2 2 2  4a25 X A <, 1 - 4al 

We summarize t h e  r e s u l t s  of t h i s  s e c t i o n  i n  t h e  fol lowing theorem. 

Theorem 2.1: 

Consider the equat ion  

wt + Awx = 0 

(2.12) 

wi th  A constant and symmetric. W e  approximate t h i s  equat ion  by t h e  scheme 

n+l n where Aw = w - w and 0 = a(A) , X = AtlAx. This  scheme can be des- 

n c r ibed  by QAw = LUAw = - T(wj+l X A n  - wj-l) w i th  L and U given by (2 .7 ) .  

The scheme is second o rde r  accu ra t e  i f  and only i f  

wi th  q a r b i t r a r y  and a - a(A) wi th  

2 2 2  L e t  a = Ul+ a2 5 A , then t h e  roundoff e r r o r  i ncu r red  i n  i n v e r t i n g  Q 

ignor ing  boundary effects is a t  most l i n e a r  i n  t h e  number of unknowns if and 

8 



only i f  L and U a r e  diagonal ly  dominant. Equiva len t ly  i f  and only i f  

I n  t h i s  s e c t i o n  w e  have s tudied  t h e  case i n  which A is  cons t an t .  For 

equat ions  wi th  v a r i a b l e  A t h e  elements R1, E2,  ul, u2 i n  (2.7) w i l l  be  

i n  t h e  j - t h  row of L and U. These rep laced  by 

elements w i l l  then depend on 

l i n e a r  case is given i n  s e c t i o n  7. 

%j’ R2j’  9 j ’  u2 j  

The a lgor i thm f o r  t h e  non- A j-1’ A j ’  A j + l .  

KKI. Analysis  of Some Standard Schemes 

We now cons ider  some of t h e  methods which can b e  de r ived  from t h e  gene ra l  

three-point  scheme (2.6) f o r  cons tan t  matrices A and show t h a t  many of them 

l ead  t o  d i agona l ly  dominant L and U f a c t o r s  which y i e l d  a s t a b l e  inve r s ion  

process .  

(1) Standard second-order methods 

ul = u = 0; so (2.12) is always s a t i s f i e d .  

are w e l l  condi t ioned f o r  a l l  < and a l l  t i m e  s t e p s .  

Hence, t h e s e  methods 2 

(2) 2 - 4 methods 

ol= 1 / 6  a2= 0; again (2.12) is always s a t i s f i e d .  

(3) 4 - 4 methods 

5 = 1 / 2 ,  al= 1 /6 ,  02= 1/3. I n  t h i s  case (2.12) imp l i e s  t h a t  

t h e  inve r s ion  is w e l l  condi t ioned only  if 

confirmed by t h e  numerical  r e s u l t s  of 

h A  - < 1. This  is  

[6 1. 

(4) Scheme (2.4) 

U l = O ,  

condi t ioned only  if 5 X A 51. This  w a s  confirmed by  computer 

u = 1 / 4  and so (2.12) impl ies  t h a t  t h e  method is w e l l  
2 

2 2 2  

runs.  

9 ’ .  



(5) Diagonally dominant schemes 

If w e  want schemes t h a t  are d iagona l ly  dominant, t h i s  can be 

achieved by choosing Ul< 0,  a2 < 0 and 0 a > 1/16.  I f  

a l <  0, U2 (0 then  (2.12) is t r i v i a l l y  s a t i s f i e d .  Hence, i f  

t h e  b a s i c  scheme is d iagona l ly  dominant, then  t h e  L and IT 

f a c t o r s  are i n d i v i d u a l l y  d i agona l ly  dominant 

1 2  

I V .  A P r a c t i c a l  LU Decomposition 

I n  sec t ion  2 w e  showed t h a t  an LU decomposition of form (2.6-2.9) is 

w e l l  condi t ioned i f  and only  i f  

I n  s e c t i o n  3 we demonstrated t h a t  (4 .1)  is au tomat i ca l ly  s a t i s f i e d  f o r  

several w e l l  known schemes. I n  t h i s  case t h e  LU decomposition w a s  u s e f u l  

mainly f o r  t h e  purpose of ana lyz ing  t h e  scheme because t h e  r e s u l t i n g  

is  a complicated mat r ix  func t ion  of A.  Furthermore,  t h e  i n t r o d u c t i o n  

of boundaries complicate t h e  LU f a c t o r i z a t i o n .  

a 

I n  order t o  gene ra t e  new schemes which can be r e a d i l y  genera l ized  

t o  t h e  multidimensional s i t u a t i o n  w e  can r eve r se  t h e  approach by choosing 

t h e  L and U f a c t o r s  as determining t h e  scheme. W e  can then i n s u r e  t h a t  

t h e  LU decomposition is q u i t e  s imple and a t  t h e  same time w e  can select 

t h e  f r e e  parameter ci so t h a t  (4 .1)  i s  always s a t i s f i e d .  L e t t i n g  1 . 1  
denote  t h e  abso lu te  va lue  of a mat r ix  as determined by func t ion  theory [ll], 

one choice  f o r  c1 is 

-10- 



For two-dimensional problems, 5 = 1 / 2 ,  t h i s  can be genera l ized  by 

The abso lu te  va lue  of t h e s e  matrices can be  c a l c u l a t e d  by d iagonal iz ing  

t h e  matrices A and B independently. Although t h i s  approach is v a l i d  

from a t h e o r e t i c a l  viewpoint,  i t  is n o t  computat ional ly  e f f i c i e n t .  In s t ead ,  

w e  can rep lace  (4.2a) by 

This  choice  of a s a t i s f i e s  (4.1) i f  p is equal  t o  o r  g r e a t e r  than t h e  

s p e c t r a l  r a d i u s  of A. This  choice y i e l d s  a scalar a which is computa- 

t i o n a l l y  e f f i c i e n t .  The extensions t o  several dimensions are  discussed i n  

s e c t i o n  6 .  

V. Boundary Trea tmen t  

There are two d i f f e r e n t  approaches towards cons t ruc t ing  boundary 

equat ions f o r  t hose  da t a  t h a t  a r e  no t  s p e c i f i e d  a n a l y t i c a l l y .  One 

approach is t o  put  reasonable  f a c t o r s  i n t o  t h e  upper p a r t  of L and 

t h e  lower corner  of U. Having, by some o the r  procedure,  decided what 

equat ions one wants, one then uses t h e  Sherman-Morrison formulas t o  

c o r r e c t  t h e  i n v e r s e  f o r  t h e  given boundary t reatment .  

can b e  expensive as another  inverse  is needed f o r  each rank-one modi f ica t ion .  

This  procedure 

Ins t ead ,  w e  s h a l l  inc lude  the  boundary t reatment  w i th in  t h e  LU 

decomposition. We s h a l l  concentrate  on t h e  l e f t  boundary, x = O ,  which 

r e q u i r e s  modi f ica t ion  of t h e  L matrix. S i m i l a r  modi f ica t ions  a f f e c t  

t h e  U mat r ix  f o r  t h e  r i g h t  boundary. 

-11- 



Assuming t h a t  t h e  boundary t reatment  i s  of f i r s t  o rde r  accuracy,  one 

f i n d s  t h a t  L should b e  modified t o  have t h e  form 

a t e l y  modify t h e  matrix L by (5.1-5.2) t o  account f o r  t h e  l e f t  boundary. 

The r e s u l t i n g  in i t ia l -boundary  va lue  problem is  then  uncond i t iona l ly  s t a b l e  

f o r  5 2 112. 

Proof 

We f i r s t  consider  a scalar equat ion.  When A > 0 boundary d a t a ,  

w(0 , t )  = f ( t ) ,  is given and t h e  mat r ix  L i s  modified so t h a t  wn = f ( t ) .  

I n  t h i s  case t h e  s t a b i l i t y  a n a l y s i s  is simple.  
0 

-12- 

w i th  a + c = I .  We u s e  l i n e a r  e x t r a p o l a t i o n  o u t s i d e  t h e  domain f o r  t hose  

v a r i a b l e s  not given a n a l y t i c a l l y .  This  is equ iva len t  t o  (5.1) w i th  

a = a + 2 y  

c = -y 
( 5 . 2 )  

We then have 

Theorem 5.1: 

Consider t h e  equat ion  

w + Awx = 0 01. x <  aJ, t > 0 t 

wi th  A constant  and symmetric. W e  approximate t h i s  equa t ion  by (2 .6 -2 .9 )  

i n  t h e  i n t e r i o r .  Depending on t h e  s i g n  of t h e  e igenvalues  of A w e  appropri-  



When A < 0 the matrix L is modified as given by (5.1-5.2). The 

stability then follows from the theory of Gustafsson, Kreiss and SundstrGm [5]. 

The straightforward but involved algebra is left to the reader. For systems 

of equations the same results hold provided that the modifications (5.1-5.2) 

are done for the characteristic variables coming into the boundary [ 4 ] .  

(5.1) requires the inversion of a 2 x 2 block matrix for the boundary 

values. 

detail in Section 7. 

The algorithmic aspects of the scheme are described in greater 

. .  
3 . .  U . .  

VI. Multidimensional LU Implicit Algorithms 

In one dimension we constructed an approximate factorization which 

had the interpretation that both L and U were approximations to one- 

sided differences. In two dimensions we can extend this technique. Consider 

the equation 

w + A w x + B w  = 0 (6.1) 
t Y 

with both A and B constant and symmetric. 

Let 

L =  

u =  

L . ... 0 
0 '. 

0 i 'ul u2 

A t  At A =  - = -  
Ax l?y 
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where 

W e  then have t h e  approximation 

(A+B) 2 - - C 2 A 2  (A 2 +B 2 )].AwG 
4 

( 6 . 3 )  

In  t h i s  case we cannot r e p r e s e n t  t h e  s t anda rd  schemes by t h i s  simple 

LU decomposition because of t h e  f i l l  in .  Nevertheless ,  t h e  scheme w e  p re sen t  

is s t i l l  second order .  

By arguments similar t o  t h e  one dimensional s i t u a t i o n  w e  have 

Lemma 6 . 1 :  

The scheme ( 6 . 2 - 6 . 3 )  has d iagonal ly  dominant f a c t o r s  L and U i f  

-14- 
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A weaker s u f f i c i e n t  condi t ion i s  given by 

and 

This is t h e  same as i n  t h e  one-dimensional ca se  and so  w e  r e q u i r e  

and ( 6 . 5 )  

This  can be  accomplished by choosing 

1+ 2 x p 5  
2 a -  1 - 2ApS 

y =  2 

wi th  p > m a x  ( p ( A ) , p ( B ) ) .  Similar extensions work - 
For t h e  non l inea r  equation 

( 6 . 6 )  

i n  t h r e e  dimensions. 

w + f  + g  + h Z = O  
t X Y  

t h e  scheme is given by Q = L U  and 

- wn) ='T x ( x x 
i+l, j , k -  i-1,j , k)  - ( gi, j+l, k -  'i,j-I,k) - 2 (hi, j , k+l - hi, j , k-1 

wi th  
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By the  cons t ruc t ion  of Q,  (6.7) is t h e  n a t r i x  r e p r e s e n t a t i o n  of t h e  

opera tor  equation 

. E + A t D t  ( ? + $ ) +  A t D +  Y Q !  ( + ;)+ AtD: ( L G Y  + 3) (wn+'-wn) 

= - A t ( d X A  + 6yB+6"C)wn 

where 6x,  Jy, 6' are c e n t r a l  d i f f e r e n c e s  ope ra to r  i n  x, y ,  and 2. This  

is equiva len t  t o  

W e  now prove t h e  s t a b i l i t y  of a Crank-Nicolson type  scheme f o r  t h e  t h r e e  

dimensional symmetric hyperbol ic  system. 

Theorem 6.1: 

Consider t h e  equat ion 

w + Awx + Bw + Cwz = 0 - x , ~ , z  < a, t > 0 (6.10) 
t Y 

with A, B, C cons tan t  and symmetric. We approximate (6.10) by t h e  f i n i t e  

d i f f e r e n c e  scheme (6.9) with 5 = 1/2.  The r e s u l t a n t  i n i t i a l  va lue  scheme is  

s t a b  le.  
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Proof 

For : = 1 / 2 ,  (6 .9 )  can be r e w r i t t e n  as 

* n  = P  w n+l P w  

or 

n W a G w  

w i t h  

G = P'lP* . 
W e  introduce a n e w  n o r m  111 111 defined by 

(6.11) 

= ( P - I P * w " ,  ( P + P * )  P - l P * w " )  

- ( P- lP*wn,  P* ( I +  P - l P * ) w "  ) 

= (W",P(P -1 ) * P * ( I + P  -1 P * I W " )  

= (w", P (I+ p-'p*,) w" ) 

= (wn, ( P +  P*)wn) = ( wn,Hw") 
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Hence, the  scheme is n o n d i s s i p a t i v e  i n  t h e  new norm. A s  long as b o t h  L 

and U are diagonal ly  dominant, w e  have t h a t  I \PI I 2 p > 0 and so t h e  

new norm is  equivalent  t o  t h e  L2 norm. This  proves s t a b i l i t y  f o r  t h e  

i n i t i a l  value problem. For 6 > 112 t h e  schemes are d i s s i p a t i v e .  

One of the  major advantages of t h e  LU decomposition i s  t h a t  only 

two f a c t o r s  a r e  needed even i n  t h r e e  dimensions. An a l t e r n a t i v e  approach 

t h a t  a l s o  r equ i r e s  only two f a c t o r s  is  presented  i n  [lo]. 

approach by Steger and Warming r e q u i r e s  f i v e  p o i n t s  i n  each space dimension 

f o r  second order  accuracy and so complicates t h e  boundary t reatment .  

However, t h i s  

V I I .  Algorithmic Aspects 

We now consider  a one-dimensional equat ion i n  conserva t ion  form 

w t + f x  = 0 

W e  approximate t h i s ,  i n  time, by 

n+l n Awn = w 

where A = Hence, w e  have 

and as before  6 2 112.  
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To approximate this in space we find an LU decomposition. Let ‘I=- it 
.lX 

and definc 

j - 1  

j = N  

( 7 . 2 )  

We replace the matrix A in the LU decomposition by linear combinations of 

so that the resulting scheme is in conservation form. A t  the A 1-1 and A j + l  

boundaries we must solve a simple 2 x 2  system for w and wN. ‘,uz=g is 

then Rolved by Lp - p 

The forward sweep L y = g  is given by 

1 

followed by Uz = Y. 

and 
SXA u. 

(a++)Yj = - (  Y- +) Yj-l+ g j  j = 2 ,  ..., N 
( 7 . 3 )  

Similarly, the backward sweep Uz = y is given by 

and 

SXA SAA 
= - (  ..+) ‘j+l+ Yj j=N-l,...,l 

finally 

(7.4) 

( 7 . 5 )  
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For the LU decomposition to be well conditioned we choose 1 = A ( . \ )  

so that (2a  - 1)2 2 (h€,A.)2. A particular choice with a scalar c1 is 
J 

For 5=1/2, the scheme is nondissipative for all a, while for 6 > 112 

the scheme is dissipative. 

stable. 

In all cases the schemes are unconditionally 

In two-space dimensions the interior difference scheme in the forward 

sweep is given by 

One can begin in the lower left-hand corner and sweep towards the 

upper right-hand corner. For the boundaries, the four points in the lower 

left-hand comer are coupled to each other and so a 4 x 4  block system has 

to be inverted. For other boundary points along the left and lower boundaries 

a 2 X 2 block system is solved. A s  in the one-dimensional case all these 

boundary solutions are calculated explicity. For the backward sweep in twr 

dimensions we have 

(7.8) 
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I 

So one can s ta r t  i n  t h e  upper r i g h t  hand corner  and sweep towards the lower 

l e f t  hand c o m e r .  A complete time s t e p  c o n s i s t s  o f  so lv ing  ( 7 . 7 )  and (7.8) 

followed by 

The a lgor i thm (7 .7 )  is completely ser ia l  i f  performed wi th  t h e  usual  

order ing.  

along diagonals.  Then, f o r  each diagonal po in t  ( i , j )  t h e  v a r i a b l e s  a t  

( i , j - 1 )  and ( i - 1 , j )  are already known and so t h e  l e n g t h  of t h e  vec to r  

is equal  t o  t h e  l e n g t h  of t h e  diagonal. 

t ion .  ) 

For a v e c t o r  machine i t  is p r e f e r a b l e  t o  s o l v e  f o r  t h e  unknowns 

(J. Lambiotte, pe r sona l  conrmunica- 

V I I I .  Acce lera t ion  t o  Steady S t a t e  

W e  consider  t h e  gene ra l  equation 

f ( u )  = 0 . (8.1) 

We gen6ra l i ze  t h i s  equat ion by considering t h e  a s s o c i a t e d  t ime-dependent 

equation 

u + f ( u )  = 0 (8 t 

This equation is solved numerically by an i m p l i c i t  method. 

Typica l ly  

L e t  Aun= 
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h n + A t  1Sfn+l+ ( l -S) fn+Atgnl  = 0 (8.3) 

where gn is some func t ion  of Aun in t roduced  by t h e  scheme. Therefore ,  

Atg" i s  of order  A t .  As befo re ,  w e  l i n e a r i z e  t h i s  equat ion  and d e f i n e  t h e  

opera tor  J = - a f  Then, ( 8 . 3 )  is  rep laced  by aU. 

( I +  €,At Jn) Sun+ A t  ( f n +  Atgn) = 0 (8 .4 )  

In orde r  t o  a c c e l e r a t e  t h e  method we wish t o  use  a l a r g e  t i m e  s t ep .  Hence, 

we cons ider  t h e  l i m i t  A t  + O D .  We then have 

Theorem 8.1 

Consider t h e  nonl inear  equat ion  (3.1) and a t i n e - l i k e  i t e r a t i o n  procedure 

given by (8.4). As ,It+ ( 8 . 4 )  approaches t h e  Newton-Raphson formula i f  and 

only i f  5 = 1/2 and g = 0. 

Proof 

Case I: g i d e n t i c a l l y  zero.  

I n  t h i s  case t h e  h ighes t  o rde r  terms y i e l d  

(8.5) 
~ J ~ A ~ ~  = -f n 

Hence, t h e  backward Euler  method, [ =  1, corresponds t o  t h e  Newton-Raphson 

algori thm. A l l  o t h e r  t i m e  averaging,  e.g., Crank-Nicolson, [ =  1 / 2 ,  seems t o  

slow down the  convergence. 

Case 11: g n o t  i d e n t i c a l l y  zero.  

The h ighes t  o rder  term is now 

~ ( A t )  2 g = 

-22- 
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For t h e  gene ra l  one-dimensional scheme (2.6).  t h i s  corresponds t o  

and then (8.6) becomes 

o2 # 0 

n D+D - h w  = 0 ( 8 . 7 )  

T h i s  aga in  may slow down t h e  r a t e  of convergence t o  t h e  s teady state. 

Hence, f o r  a one-dimensional problem t h e  LU decomposition d iscussed  

i n  s e c t i o n  4 can reduce t h e  rate of convergence. For two-dimensional 

problems both  A.D.I. and t h e  LU decomposition in t roduce  terms of o rde r  

(At)2. TIence, bo th  methods wil l  converge more slowly than a f u l l  two- 

dimensional bacbxard Euler  method. Des ide r i  e t  a l . ,  [ 3 ]  d i s c u s s  ways of 

a c c e l e r a t i n g  t h e  two-dimensional A.D.I. method. 

t h e  A.D.I. method in t roduces  terms of o rde r  

reduce t h e  rate of convergence even f u r t h e r .  

terms a t  most of o rde r  (At) independent of t h e  number of dimensions. For 

a l l  these  cases  t h e  t r u n c a t i o n  e r r o r  has an a d d i t i o n a l  f a c t o r  of A t  s i n c e  

Aw is of o rde r  A t .  Hence, choosing a sequence of t i m e  s t e p s  may a c c e l e r a t e  

t h e  convergence by a mechanism similar t o  t h a t  d i scussed  i n  [ 3 ] .  An a l t e r n a -  

t i v e  p o s s i b i l i t y  i s  t o  use t h e  LU decomposition as a precondi t ion ing  f o r  a 

conjugate g r a d i e n t  method based on a backward E u l e r  approximation. 

For three-space dimensions 

( A t ) 3  which can be expected t o  

The LU decomposition scheme has 

2 

I X .  Conclusion 

Given a three-point  i m p l i c i t  scheme f o r  a hyperbol ic  problem t h e  

a s soc ia t ed  LU decomposition i s  constructed.  It is then shown t h a t  t h e  

important requirement f o r  a w e l l  conditioned problem is  t h a t  bo th  

U be  d i agona l ly  dominant. It is  shown t h a t  t h i s  is t r u e  f o r  most s t anda rd  

schemes even though t h e  o r i g i n a l  matrix is  not d i agona l ly  dominant. 

L and 
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?he s i t u a t i o n  i s  then reversed and w e  begin wi th  t h e  L and u f a c t o r s  

i n  t h e  cons t ruc t ion  of new i m p l i c i t  methods. 

t h e s e  methods are  e f f e c t i v e l y  e x p l i c i t  s i n c e  one can march d i r e c t l y  from 

one bocndary t o  the  o the r .  Boundary t rea tment .  non l inea r  equat ions  and 

s e v e r a l  dimensions are a l l  e a s i l y  included. 

s t a b l e  f o r  all space  dimensions even though t h e  time s t e p  independent 

ve r s ion  of the  A.D.I.  method is uns t ab le  f o r  three-space dimensions.  

Though uncond i t iona l ly  s t a b l e  

The method is  uncond i t iona l ly  

Both t h e  LU decomposition and t h e  A . D . I .  method add e r r o r s  t h a t  

2 are of order  (At) t o  t h e  b a s i c  scheme. It is shown t h a t  t h e  mul t i -  

dimensional backward Euler  method is equ iva len t  t o  t h e  Newton-Raphson 

method f o r  l a r g e  t ime s t e p s .  The a d d i t i o n  of (At) terms d e s t r o y s  t h i s  

equivalence and reduces t h e  rate of convergence t o  a s teady  s ta te  s o l u t i o n .  

2 

I n  t h r e e  dimensions t h e  A.D. I .  scheme in t roduces  

t h e  rate of convergence even f u r t h e r  f o r  l a r g e  A t .  S ince Aw is of t h e  

o rde r  of A t  t h e  t runca t ion  e r r o r  f o r  s m a l l  A t  i s  reduced by an  e x t r a  

f a c t o r  of A t  beyond t h e  prev ious ly  mentioned e r r o r s .  

(At)’ e r r o r s  which reduce 

The LU decomposition is less e f f i c i e n t  t han  t h e  s t anda rd  

methods i n  one-space dimension. For two dimensions t h e  LU f a c t o r i z a t i o n  

is  s l i g h t l y  more e f f i c i e n t  than t h e  A . D . I .  method wi th  t h e  advantages 

depending on computer a r c h i t e c t u r e .  

are i n  three-space dimensions. The LU decomposition r e q u i r e s  only  two 

sweeps through t h e  g r i d  and is uncondi t iona l ly  s t a b l e  whi le  A . D . I .  r e q u i r e s  

t h r e e  sweeps and i n  d e l t a  form is uncond i t iona l ly  uns tab le .  Furthermore,  

t h e  rate of convergence for l a r g e  t i m e  s t e p s  t o  a s teady  s t a t e  is  slower 

f o r  A . D . I .  

The main advantages of t h e  new method 
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